
SCR as an IV&V Tool
�

Steve Easterbrook and John Callahan
fsteve,callahang@cerc.wvu.edu

NASA/West Virginia University Software IV&V Facility
100 University Drive
Fairmont, WV 26554

304-367-8235, 304-367-8211(fax)

February 5, 1996

Abstract

1 Introduction

This paper describes some preliminary work on the use of SCR-style speci�cation as a tool

for Independent Veri�cation and Validation (IV&V). Our intention is to use formal methods

not as a part of the development process itself, but as a `shadow' activity, performed by an

independent team of experts. Our long-term expectation is that this approach will turn out to

be a less painful way of introducing formal methods into well-established, large-scale software

development processes. However, there are a number of problems that need to be solved before

SCR-style methods can be used in this way. The most important of these is the need to model

the relationship between informal and formal speci�cations.

The context for this work is the development of software for the International Space Station

(ISS) project. Boeing Space and Defense Group Houston (Prime) is responsible for supervising

the overall development and integration of International Space Station software. There are three

Product Groups (PGs), McDonnell Douglas Aerospace, Rockwell Aerospace - Rocketdyne and

Boeing Space and Defense Group Huntsville, who are developing several key Computer Software

Con�guration Items (CSCIs), which Prime is responsible for integrating. There are also several

International Partners (IPs) including Russia, Japan, Canada, and the European Space Agency,

who are developing software that will need to be incorporated into ISS. With over 45 ight

computers and an estimated 1.1 million source lines of ight code, the potential problems are

considerable. Software IV&V is currently being performed by Intermetrics, under an interim

contract. The Intermetrics team is based at Fairmont, W.Va., with personnel stationed in

Houston and Huntsville in order to interact with the development teams.

In this paper, we �rstly describe the IV&V process, and discuss some of the aspects of

this process that hinder e�ective IV&V. With this as background, the remainder of the paper

focuses on the use of methods and tools within this process. We describe how the use of a

method in an IV&V process di�ers from its use in development work, and list some of the

concerns that arise when a new method is adopted in IV&V. We present a small experiment

in the use of SCR-style tables. The experiment showed that the natural language used in the

Software Requirements Speci�cation (SRS) documents is inherently ambiguous, and that the

�This work is supported by NASA Cooperative Research Agreement NCCW-0040

1



future task of generating formal speci�cations from this documentation will be fraught with

di�culty. We conclude that in an IV&V context, the analytical bene�ts o�ered by methods

such as SCR have to be weighed against the e�ort needed to maintain �delity between the

formal model and the informal speci�cation used by the development team.

2 The IV&V Process

Veri�cation and validation (V&V) is a widely-practiced discipline that employs many types

of analysis to ensure that software development e�orts are successful. V&V employs many

techniques throughout the software lifecycle, including analysis of requirements, design, code,

performance, schedule, and cost, as well as testing. V&V is performed in-house by the devel-

opment contractor, but may be the responsibility of an entirely separate team from the one

developing the software. In Independent Veri�cation and Validation (IV&V), the software cus-

tomer hires a separate contractor to perform V&V analysis on the products and process of the

software development contractor [9]. This analysis is performed in parallel with the development

process, and in no way replaces the in-house V&V done by the development contractor. IV&V is

applied in high-cost and safety-critical projects to reduce analysis bias and reduce development

risk. The customer relies on the IV&V contractor as an informed, unbiased advocate to assess

the status of a project's schedule, cost, and the viability of its product during development.

For true IV&V, the IV&V contractor has managerial, �nancial and technical independence, and

reports to the customer, not the developer.

An example of an IV&V activity is the analysis of speci�cations on the Space Station project.

An SRS is written by the relevant development contractor for each Software Con�guration Item

(CSCI). These are in natural language, and follow the format of DOD-STD-2167A. The IV&V

contractor periodically receives copies of the SRS documents, in various stages of completion.

These are analysed for technical integrity by the IV&V contractor, in order to identify any

requirements problems or risks. The kind of analysis performed will vary according to the

level and the type of speci�cation, and will cover issues such as clarity, testability, traceability,

consistency and completeness. If problems are identi�ed, the IV&V contractor may recommend

either that the requirements be rewritten, or that the problem be tracked through subsequent

phases.

Performing IV&V on large projects is far from straightforward. Problems faced by the IV&V

contractor include:

resource allocation { A complete, detailed analysis of the entire system is infeasible. E�ort

has to be allocated so as to maximise e�ectiveness. For example, a criticality and risk

analyses might be performed to determine which components need the most scrutiny.

Timing is also a factor: e�ort needs to be allocated at the right points in the development

of a product (e.g. a document), so that the product is mature enough to be analysed, but

not so mature that it cannot be changed.

short timescales { To be most e�ective, IV&V reports are needed as quickly as possible.

There is always a delay between the delivery of an interim product to the IV&V team,

and the completion of analysis of that product. During this time, the development process

continues. Hence, if IV&V analysis takes too long, the results might be available too late

to be useful. In general, the earlier an error is detected, the cheaper it is to correct.

lack of access { Contact between the development team and the IV&V team is di�cult to

manage. The IV&V team needs to maintain independence, whilst ensuring they obtain

enough information from the developers to do their job. From the developers' point of

view, interaction with the IV&V team represents a cost overhead, which can interfere with

2



project deadlines. Inevitably, the IV&V contractor has less access to the development

team than is ideal.

evolving products { Documentation from the development team is usually made available

to the IV&V contractor in draft form, to facilitate early analysis. The drawback is that

documents may be revised while the IV&V team is analysing them, making the results of

the analysis irrelevant before it is �nished.

reporting the right problems { The IV&V contractor has, by necessity, considerable dis-

cretion over what kinds of analysis to perform on di�erent products. It also has discretion

over how it reports problems. It is vital to the e�ective use of IV&V that the IV&V

contractor prioritizes the problems it identi�es. If too many trivial problems are reported,

this may swamp the communication channels with the developer and the customer.

These problems will continue to act as barriers to the e�ective application of IV&V to major,

high-cost, safety-critical projects. But it is the interaction between the IV&V and development

teams that drive improvements in both products and processes. Section 3 discusses IV&V's

role as an agent of process improvement in the context of applying new tools and techniques

to analyze computer software. Section 4 discusses an example of this approach through an

experiment using tabular requirements in IV&V analysis e�orts.

3 Methods and Tools in the IV&V process

An important aspect of IV&V work is the choice of the right methods and tools. Ideally, an

IV&V contractor will have access to all the tools used by the development team, including the

ability to share all project databases. However, the IV&V team also needs to supplement these

with additional methods and tools, to address any gaps or weaknesses in the coverage of the

developer's tools. These additional tools need to complement the developer's tools, so that

interoperability does not become a problem. The use of these additional tools is an important

factor in ensuring that IV&V is truly independent.

It is often the case that the use of a particular method or tool by the IV&V team leads to

the adoption of that method or tool by the developers. In part this is due to the `watchdog

e�ect': if the developer knows that their product will be analysed in a particular way, it is

in their interest to perform the analysis themselves before releasing it. If this seems to be a

rather negative reason to adopt a technique, there is also a positive aspect. Because the IV&V

team is out of the critical path for the software development e�ort, they have more scope for

experimentation with new techniques than the developers [1]. Hence, in some ways the IV&V

team has a role to play as a proving ground for new techniques, and can come to play a role as

an agent of process improvement.

For these reasons, we believe that IV&V o�ers a practical route through which formal meth-

ods may be introduced on projects that would otherwise not be able to adopt them. The

interaction of IV&V with the development team can drive improvements via the `watchdog ef-

fect'. Problems identi�ed by the IV&V team precipitate changes in the development process, as

well as the product. Thus, communication between the IV&V team and the development team

can drive development activities, decisions, and priorities. Currently, we are investigating prop-

erties of this bipartite model [2] as a means of coordinating design evolution and prototyping in

rapid software development environments.

There are still problems to be overcome whenever the IV&V team adopts a tool that is not

used by the developers. Compatibility with the developers' tools is important. For example,

if IV&V use a formal speci�cation tool, the informal speci�cation delivered by the developers

will need to be translated into the formal speci�cation language not just once, but each time

the developers produce a new draft. Any problems identi�ed by using the tool must be traced

3



back to the informal speci�cation, before they can be reported. There must be a reasonable

assurance that the formal speci�cation remains faithful to the original, otherwise any analysis

performed on it is worthless. Hence, keeping track of the relationship between the formal and

informal speci�cations is vital.

4 Experiments with Tabular (SCR-style) notations

Currently, the development contractors on the Space Station project do not make use of any

formal speci�cation methods. We are working with the IV&V team to explore how formal

methods can be used to enhance the kinds of analysis they perform.

Because the IV&V process is parallel and separate from the development process, there is

an unusually large amount of exibility in how a formal method can be used. In a development

process, a full commitment is required. For example, if a formal speci�cation method is adopted,

it must be used to generate and analyse complete speci�cations for whichever components it is

used on. If this cannot be achieved with the method, it must be achieved without the method,

if development is to proceed. In contrast, the IV&V activity is not in the critical path, and can

experiment with partial speci�cation and partial analysis. In fact, the aim of the IV&V agent

is not to perform complete analyses, but to do just enough analysis to check speci�c aspects of

the software.

Our experimentation with SCR has exploited this exibility. Our �rst step was simply to

translate some of the more opaque and ambiguous natural language requirements into a formal

(tabular) notation, in order to improve understanding of them. This turned out to be a useful

step in assessing the quality of the speci�cation, and con�rmed some of our suspicions about

ambiguity in the original speci�cation.

The second step was to perform a limited set of analyses on those parts of the speci�cation

that we had represented formally. In particular, the section of the speci�cation on which we

concentrated described an implicit fault recovery model, by describing the conditions under

which each action needed to be taken. The formal notation made a completeness and consistency

analysis possible.

The �nal step, that of producing a full formal model for the subsystem has not yet been

taken. A number of factors indicate that we will have to take this step, not least because the

IV&V team has had di�culty obtaining the original models on which the speci�cation is based.

Hence, a formal model should provide an alternative route by which to check the fault recovery

requirements. However, a number of questions need to be addressed �rst, including the amount

of e�ort required to produce and maintain the formal model.

We describe each of these steps in more detail below.

4.1 Partial translations

Our initial interest in SCR-style tabular notations was to reduce the ambiguity of the natural

language Software Requirements Speci�cations. In particular, the Fault Detection, Isolation

and Recovery (FDIR) requirements were di�cult to understand. The IV&V team needed an

alternative, clearer representation. Typically, these requirements list a combination of failure

conditions that require a particular recovery action. A particularly complicated example is:

(2.16.3.f)While acting as the bus controller, the C&C MDM CSCI shall set the e,c,w,

indicator identi�ed in Table 3.2.16-II for the corresponding RT to \failed" and set the

failure status to \failed" for all RT's on the bus upon detection of transaction errors

of selected messages to RTs whose 1553 FDIR is not inhibited in two consecutive

processing frames within 100 millisec of detection of the second transaction error if;

a backup BC is available, the BC has been switched in the last 20 sec, the SPD card

4



OR

C&C MDM acting as the bus controller T T T T

Detection of transaction errors T T T T

in two consecutive processing frames

errors are on selected messages T T T T

the RT's 1553 FDIR is not inhibited T T T T

A backup BC is available T T T T

A The BC has been switched in the last 20 seconds T T T T

N The SPD card reset capability is inhibited T T - -

D The SPD card has been reset in the last 10 major - - T T

(10 second) frames

The transaction errors are from multiple RTs T T T T

The current channel has been reset within the last major T F T F

frame

The bus channel's reset capability is inhibited - T - T

Table 1: A Leveson-style table for requirement 2.16.3.f.

reset capability is inhibited, or the SPD card has been reset in the last 10 major

(10-second) frames, and either:

1. the transaction errors are frommultiple RT's, the current channel has been reset

within the last major frame, or

2. the transaction errors are from multiple RT's, the bus channel's reset capability

is inhibited, and the current channel has not been reset within the last major

frame.

The IV&V team suggested that requirements of this form be represented in a tabular nota-

tion, similar to that adopted by Heimdahl and Leveson [6] in their analysis of TCAS II. These

are essentially truth tables, used to represent the combinations of conditions that lead to a single

mode transitions. This notation allows us to represent arbitrary combinations of conjunctions

and disjunctions, without ambiguity. For example, the conditional part of the above requirement

could be represented as shown in Table 1.

For the IV&V team, this was a signi�cant improvement in readability. More importantly, the

process of producing the tables ensured that the analysts fully understood the requirement. This

bene�t is very important for IV&V. In many cases, just reading a speci�cation is insu�cient to

really appreciate the detail. Short of repeating the development process from scratch, it can be

hard for the IV&V to understand a speci�cation in the same way that its authors understand

it. Translating it into a table, however, proved to be a valuable clari�cation process.

There was, unfortunately, a problem. Translation of a single requirement, like the one above,

was not a straightforward task. As an experiment, we gave the English language version to four

di�erent people, all of whom had some experience of representing requirements using tables,

and asked them to produce the tabular form. We received four di�erent answers, which di�ered

in both the number of conditions identi�ed (i.e. number of rows in the table) and the number

of combinations under which the function would be activated (i.e. columns in the table). The

version shown in Table 1 is a synthesis of the four answers, representing what we currently

believe is the intended interpretation.

5



The di�erences in the responses show that the original requirements statement is riddled

with ambiguities. For example, the mixture of `ands' and `ors' in the requirement is a problem

because, unlike programming languages, English does not have any standard precedence rules.

It is not clear how to scope the various subclauses, either. For example, the timing condition

`within 100 millisec...' could refer to the inhibition of the FDIR, or to one or both of the

required setting operations. With some domain knowledge, it is possible to guess the most

likely interpretation, but this is by no means a trivial task, and there is no guarantee that

everyone who needs to read this requirement will get it right.

The experiment demonstrated three important results. Firstly, as expected, the tabular

forms are a precise, readable alternative to natural language. In fact, they were very helpful in

resolving misunderstandings. For example, it would be di�cult to discover that our four subjects

had di�erent interpretations of the original requirement without asking them to re-write it. By

re-writing it in tabular form, we could identify exactly where the disagreements lay, and then

take each discrepancy in turn and discuss what we thought the most likely interpretation was.

From this, we were able to synthesis a `best' interpretation. Note that this �nal version was

di�erent from all four of the individual versions, implying that if the �nal version is correct, all

four individual attempts were wrong!

This leads to the second result, which is that translation of informal requirements into a

formal notation is error prone. All four of our subjects had some experience of using such

tables, so the problem lies not in the correct use of the notation, but in the interpretation of

the informal statement of requirements. The requirement we used in the experiment is perhaps

an extreme example, given its rather convoluted English. However, there is enough scope for

misinterpretation in the process of formalising the requirements to cause us to worry about the

�delity of our formal models.

The third result is that the whole process was remarkably good at identifying ambiguities in

the original speci�cation. By producing di�erent interpretations and comparing them, we were

able to identify a systematic pattern of ambiguities in the way the English language requirements

were written. Hence, even if we fail to persuade the development team to adopt a tabular

notation, we can at least help them to correct the ambiguities in the English.

In fact, the development contractors have used the tabular notation occasionally, in the most

recent versions of the speci�cations. Initially, they resisted the IV&V team's requests to adopt

a tabular notation, largely because of schedule constraints. They have now begun to use the

notation for revisions of the speci�cations, especially in areas where reviewers had had problems

with readability. We regard this as a small but important process improvement, inspired by the

IV&V team.

4.2 Partial analysis

The second stage of our work was to attempt some formal analysis of the tables. One of

the important validity checks for these requirements is that an action is speci�ed for each

possible combination of failure conditions. Another check is that no combination of conditions

has conicting actions speci�ed for it. We refer to these as coverage and disjointness checks

respectively [10].

At this stage we had six tables, similar to the one shown in Table 1, representing the six

paragraphs, a to f, of section 2.16.3 of the requirements. There were a number of conditions

common to several of the tables. Unfortunately, the wording varied, and it was not always

obvious whether similar sounding phrases actually referred to the same condition, due to incon-

sistencies in the use of terminology. For example the condition \the bus has been switched in

the major (10-second) frame" appeared in one paragraph, and \the bus has been switched in the

last major frame" appeared in another. We initially assumed these to be identical. However,

this led to an inconsistency in the table. In fact the former refers to the current frame, while

6



the latter refers to the previous frame. There were numerous places where we had to make

assumptions to proceed, and we carefully recorded these as annotations to the original text, to

be checked with the developers.

The resulting table is shown in Table 2. This table includes the actions that need to be taken

(the shalls), as well as the conditions. The asterisks in the table cross-reference the conditions

with the actions. Hence the table is essentially an SCR event table. It di�ers from the standard

SCR event tables in that it shows a number of controlled variables on a single table, and omits

the `modes' column, mainly because we had not distinguished any modes at this stage.

We are exploring the use of PVS to perform coverage and disjointness analysis on this table

(following [10]). As part of this process, we have simpli�ed Table 2, by de�ning each of the

fault recovery options as a di�erent mode. This allows us to abstract away from the actual

outputs of the subsystem, and model the gross behaviour of the FDIR controller. The result is

shown in Table 3. This mode table shows all the transitions from a `normal' mode to each of

the fault recovery modes. Note that none of these modes are described explicitly in the original

requirements.

Again, the process was far from straightforward. We found a number of ambiguities and

inconsistencies in the expression of the requirements. This made building the table hard, but

was a useful exercise, as it allowed us to clarify further our understanding of the requirements.

It also helped to identify further weaknesses in the original speci�cation, especially where the

operation of the system was not described in adequate detail to explain the required fault

analysis functions.

4.3 Full modelling & analysis

The previous steps merely picked out small pieces of the speci�cation and represented them

formally, using SCR-style tables. Our �nal step is to generate a complete formal model of the

subsystem. For example, Table 3 only describes the transitions from the normal state to the

initial fault diagnosis. The model does not yet include changes in the controlled variables, nor

the transition back to normal mode, which includes inhibiting the FDIR for a speci�ed time,

to allow the corrective action to take e�ect. Clearly there are important behaviours associated

with the repeated occurrence of errors, which are not represented in the table.

We aim to build a complete formal model of this section of the requirements, based on the

four variable model, using a state-based approach. This should allow us to perform a wide range

of consistency checks [7]. The original impetus for this work came from the di�culty the IV&V

team had in obtaining the developer's design models. The IV&V team needs a model in order

to validate that the speci�ed behaviour is correct. If they cannot obtain the original models,

they must build their own. Even when they do have access to the developer's models, it is often

desirable to develop new models using a di�erent paradigm from that used by the developer.

Hence the choice of a formal model.

From a research point of view, our aim in developing an SCR-style model is twofold. First,

we wish to evaluate the utility of this kind of analysis in the context of IV&V. In particular, we

need to determine how much extra e�ort is required to produce a formal model, and what the

payo� is in terms of the kinds of analysis it allows us to perform. As always, IV&V works within

a limited budget, and it may turn out that the e�ort required to build the formal models is too

high to permit the technique to be used widely. Second, we wish to determine what steps are

involved in building formal models within an IV&V context, and how those steps might best be

supported.

We had hoped to continue with the incremental approach outlined in the previous two sec-

tions, until we had a complete model. Unfortunately, the original speci�cation and the SCR

model are fundamentally di�erent kinds of abstraction. There is no simple mapping between

the original informal speci�cation and the formal model we are developing. The original speci-

7



T
a
b
le
2
:
M

e
r
g
e
d
t
a
b
le
fo
r
s
e
c
t
io
n

2
.1
6
.3

T
ex
t

T
y
p
e

(a
)

(b
)

(b
)

(c
)

(c
)

(d
)

(d
)

(d
)

(d
)

(e
)

(e
)

(e
)

(e
)

(f
)

(f
)

(f
)

(f
)

W
h
il
e
a
ct
in
g
a
s
th
e
b
u
s
co
n
tr
o
ll
er
,

co
n
d
.

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

th
e
C
&
C
M
D
M

C
S
C
I

a
ct
o
r

sh
a
ll
sw
it
ch
th
e
ch
a
n
n
el
to
th
e
b
a
ck
u
p
b
u
s

a
-a
ct
io
n
1

*

sh
a
ll
re
se
t
th
e
cu
rr
en
t
S
P
D
ch
a
n
n
el

b
-a
ct
io
n
1

*

*

sh
a
ll
p
a
u
se
th
e
B
u
s
F
D
IR
lo
g
ic
o
n
th
e

b
-a
ct
io
n
2

*

*

S
P
D
1
5
5
3
ch
a
n
n
el
fo
r
T
B
D
(6
-1
2
se
co
n
d
s)

(u
n
ti
l
th
e
ch
a
n
n
el
is
b
a
ck
o
n
-l
in
e)

sh
a
ll
re
se
t
th
e
S
P
D
ca
rd

c-
a
ct
io
n
1

*

*

sh
a
ll
p
a
u
se
th
e
B
u
s
F
D
IR
lo
g
ic
o
n
b
o
th

c-
a
ct
io
n
2

*

*

S
P
D
1
5
5
3
ch
a
n
n
el
s
fo
r
T
B
D
(1
5
-2
0
se
co
n
d
s)

(u
n
ti
l
th
e
ch
a
n
n
el
s
a
re
b
a
ck
o
n
-l
in
e)

sh
a
ll
se
t
th
e
e,
c,
w
,
in
d
ic
a
to
r
id
en
ti
�
ed

d
,f
-a
ct
io
n
1

*

*

*

*

*

*

*

*

in
T
a
b
le
3
.2
.1
6
-I
I
fo
r
th
e
co
rr
es
p
o
n
d
in
g

R
T
to
fa
il
ed
,

sh
a
ll
se
t
fa
il
u
re
st
a
tu
s
to
fa
il
ed

d
-a
ct
io
n
2

*

*

*

*

sh
a
ll
se
t
th
e
e,
c,
w
,
in
d
ic
a
to
r
id
en
ti
�
ed

e-
a
ct
io
n
1

*

*

*

*

in
T
a
b
le
3
.2
.1
6
-I
I
fo
r
it
se
lf
to
fa
il
ed
,

sh
a
ll
se
t
fa
il
u
re
st
a
tu
s
to
fa
il
ed
fo
r
it
se
lf

e-
a
ct
io
n
2

*

*

*

*

sh
a
ll
se
t
fa
il
u
re
st
a
tu
s
to
fa
il
ed
fo
r
a
ll

f-
a
ct
io
n
2

*

*

*

*

R
T
's
o
n
th
e
b
u
s

th
e
b
a
ck
u
p
b
u
s
is
a
v
a
il
a
b
le

co
n
d
.

T

u
p
o
n
d
et
ec
ti
o
n
o
f
tr
a
n
sa
ct
io
n
er
ro
rs
in

tr
ig
g
er

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

tw
o
co
n
se
cu
ti
v
e
p
ro
ce
ss
in
g
fr
a
m
es

er
ro
rs
a
re
o
n
se
le
ct
ed
m
es
sa
g
es
to
R
T
s.
..

co
n
d
.

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

..
.w
h
o
se
1
5
5
3
F
D
IR
is
in
h
ib
it
ed

co
n
d
.

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

w
it
h
in
1
0
0
m
il
li
se
c
o
f
d
et
ec
ti
o
n
o
f
th
e

ti
m
in
g

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

se
co
n
d
tr
a
n
sa
ct
io
n
er
ro
r

th
e
b
u
s
h
a
s
b
ee
n
sw
it
ch
ed
in
th
e

co
n
d
.

F

F

F

(c
u
rr
en
t)
m
a
jo
r
(1
0
-s
ec
o
n
d
)
fr
a
m
e.

th
e
S
P
D
C
h
a
n
n
el
's
re
se
t
ca
p
a
b
il
it
y
is

co
n
d
.

F

F

-

T

-

-

T

T

in
h
ib
it
ed
,

th
e
sw
it
ch
to
th
e
a
lt
er
n
a
te
b
u
s
is
in
h
ib
it
ed

co
n
d
.

T

-

-

T

-

T

th
e
b
u
s
h
a
s
b
ee
n
sw
it
ch
ed
in
th
e
la
st

co
n
d
.

-

T

T

F

T

F

m
a
jo
r
fr
a
m
e.

th
e
S
P
D
ca
rd
re
se
t
ca
p
a
b
il
it
y
is
in
h
ib
it
ed
,

co
n
d
.

F

F

T

T

-

-

T

T

-

-

th
e
S
P
D
ca
rd
h
a
s
b
ee
n
re
se
t
in
th
e
la
st

co
n
d
.

F

F

-

-

T

T

-

-

T

T

1
0
m
a
jo
r
(1
0
-s
ec
o
n
d
)
fr
a
m
es
,

th
e
tr
a
n
sa
ct
io
n
er
ro
rs
a
re
fr
o
m

m
u
lt
ip
le
R
T
's

co
n
d
.

T

T

F

F

F

F

T

T

T

T

T

T

T

T

th
e
cu
rr
en
t
ch
a
n
n
el
h
a
s
b
ee
n
re
se
t
w
it
h
in

co
n
d
.

T

F

T

T

F

F

T

F

T

F

T

F

T

F

th
e
la
st
m
a
jo
r
fr
a
m
e

a
b
a
ck
u
p
B
C
is
a
v
a
il
a
b
le
,

co
n
d
.

T

T

T

T

T

T

T

T

th
e
B
C
h
a
s
b
ee
n
sw
it
ch
ed
in
th
e
la
st
2
0
se
c

co
n
d
.

F

F

F

F

T

T

T

T

th
e
b
u
s
ch
a
n
n
el
's
re
se
t
ca
p
a
b
il
it
y
is
in
h
ib
it
ed

co
n
d
.

-

T

-

T

-

T

-

T

8



T
a
b
le
3
:
M

o
d
e
t
r
a
n
s
it
io
n

t
a
b
le
fo
r
N
o
r
m
a
l

C
u
rr
en
t

C
o
n
d
it
io
n
s

N
e
x
t

M
o
d
e

tw
o

b
u
s

ch
a
n
n
el

b
u
s

b
u
s

ca
rd

ca
rd

m
u
lt
ip
le

ch
a
n
n
e
l

b
a
ck
u
p

M
o
d
e

co
n
se
cu
ti
v
e

sw
it
ch
ed

re
se
t

sw
it
ch

sw
it
ch
ed

re
se
t

re
se
t

R
T
s

re
se
t

b
u
s

er
ro
rs

la
st
fr
a
m
e

la
st
fr
a
m
e

in
h
ib
it
ed

th
is
fr
a
m
e

in
h
ib
it
ed

la
st
fr
a
m
e

in
v
o
lv
ed

la
st
fr
a
m
e

a
v
a
il
a
b
le

N
o
rm
a
l

@
T

-

-

-

F

-

-

-

-

T

sw
it
ch
b
u
se
s

@
T

-

F

T

F

-

-

-

-

-

re
se
t
th
e
ch
a
n
n
e
l

@
T

T

F

-

F

-

-

-

-

-

re
se
t
th
e
ch
a
n
n
e
l

@
T

-

-

-

-

F

F

T

T

-

re
se
t
th
e
ch
a
n
n
e
l

@
T

-

T

-

-

F

F

T

F

-

re
se
t
th
e
ch
a
n
n
e
l

@
T

T

-

-

-

-

-

F

T

-

R
T
h
a
s
fa
il
e
d

@
T

F

-

T

-

-

-

F

T

-

R
T
h
a
s
fa
il
e
d

@
T

T

T

-

-

-

-

F

F

-

R
T
h
a
s
fa
il
e
d

@
T

F

T

T

-

-

-

F

F

-

R
T
h
a
s
fa
il
e
d

@
T

F

-

-

F

T

-

T

T

T

F
D
IR
h
a
s
fa
il
e
d

@
T

F

T

-

F

T

-

T

F

T

F
D
IR
h
a
s
fa
il
e
d

@
T

F

-

-

F

-

T

T

T

T

F
D
IR
h
a
s
fa
il
e
d

@
T

F

T

-

F

-

T

T

F

T

F
D
IR
h
a
s
fa
il
e
d

@
T

-

-

-

T

T

-

T

T

T

A
ll
R
T
s
fa
il
e
d

@
T

T

-

-

-

T

-

T

T

T

A
ll
R
T
s
fa
il
e
d

@
T

-

T

-

T

T

-

T

F

T

A
ll
R
T
s
fa
il
e
d

@
T

T

T

-

-

T

-

T

F

T

A
ll
R
T
s
fa
il
e
d

@
T

-

-

-

T

-

T

T

T

T

A
ll
R
T
s
fa
il
e
d

@
T

T

-

-

-

-

T

T

T

T

A
ll
R
T
s
fa
il
e
d

@
T

-

T

-

T

-

T

T

F

T

A
ll
R
T
s
fa
il
e
d

@
T

T

T

-

-

-

T

T

F

T

A
ll
R
T
s
fa
il
e
d

9



�cation is essentially a structural/procedural view of the requirements. This is consistent with

the multigraph paradigm [8], used by the developers to identify possible system failures, and

to prescribe results. It is also consistent with the design models, developed using the tool MA-

TRIXx, that are used in the developer's internal V&V processes. In contrast, the formal SCR

model is state-based, representing a behavioural view.

At this point we have reached a threshold. It appears that we cannot continue complete

the formal model just by adding more tables. We need to take a leap of faith and abandon

the existing structure of the speci�cation. In its place, we will need to de�ne modes and mode

transitions that have no direct counterpart in the informal speci�cation. This will allow us

to generate a complete formal model, to which we can apply model checking techniques. The

dilemma is that the more we develop our formalmodel, the more we lose track of the relationship

with the original speci�cation. As soon as this happens, our analysis loses its value, as we can

never be sure that we are analysing the original speci�cation.

5 Discussion

We have described our on-going work with SCR as a tool for an Independent V&V team to

perform analysis of software requirements. Our initial results are very encouraging: the tabular

representations remove the ambiguities of the English language requirements, and are easy to

read by di�erent audiences. However, our central problem is now one of maintaining �delity

between informal and formal speci�cations.

As we have described, the existing informal speci�cations reect a very di�erent abstraction

to that used in a state-based formal model. Within a development process, this would not be a

problem. If the development team can commit themselves fully to the formal speci�cation, the

informal speci�cation becomes redundant, and can be put to one side. The formal speci�cation

can then be used both for the validation process (checking that the requirements capture the

real need) and for subsequent veri�cation processes (checking that design, implementation, etc.,

meet the requirements). Therefore, it does not matter if the formal and informal speci�cations

do not agree { the formal speci�cation can be validated in its own right, and will take precedence.

However, in an IV&V context, a formal model developed by the IV&V team cannot ever

replace the informal speci�cation. It is not the IV&V team's responsibility to write speci�cations

for use in development. To do so would destroy their independence. The IV&V team can

analyse, identify problems, and make recommendations, but they cannot do the developer's

work for them. Hence, any models created by the IV&V team are purely for their own use

during analysis.

The IV&V team must therefore either persuade the developers to adopt formal methods

themselves, or take care to maintain �delity between the developer's informal speci�cations and

their own formal models. With the current state of practice, wholescale adoption of formal

methods by the developers on an existing project is unlikely. The barriers are well documented,

and include a lack of industrial strength tool support, the need to integrate formal methods with

existing processes, and of course a training overhead [5]. However, the developers are beginning

to adopt the tabular forms we presented in the previous section. An incremental introduction

of formal notations seems likely. In the meantime, the IV&V team must still face the problem

of �delity between informal and formal speci�cations.

The �delity problem is important to IV&V for three reasons. First, formal models devel-

oped by IV&V are produced for the purposes of checking the developer's speci�cations. The

models are only useful for this purpose if they are accurate representations of the developer's

speci�cations.

Second, the informal speci�cations will continue to evolve throughout the process. Building

formal models of these speci�cations is not a one time activity, but a process of incremental

10



change. When the developers deliver a new version of a speci�cation, the IV&V team is faced

with the daunting task of determining how the changes a�ect the work they have already done.

If they have developed formal models, the models must be updated to reect the changed

speci�cation. Hence, the informal and formal speci�cations need to have full traceability between

them.

Third, when analysis of the formal models reveals problems in the speci�cations, these prob-

lems must be traced back to the informal speci�cation before they can be reported. Although

it may be possible to present the problem to the customer and developer in terms of the for-

mal analysis performed, correction of the problem must take place in the developer's informal

speci�cations. Hence, reverse traceability is also important.

Although the �delity problem seriously a�ects the utility of any formal analysis performed by

the IV&V team, we should point out that it does not a�ect all the bene�ts of formal speci�cation.

The process of translating pieces of the informal speci�cation into a formal notation has bene�t

not just for the analysis that it leads to, but also for the removal of ambiguities and improved

understanding. For this bene�t, it is the process of formalisation, rather than the end product

that is important.

6 Conclusions

This paper has described our initial work in the use of formal methods in an IV&V project.

We have discussed how the demands placed on methods and tools in IV&V are di�erent from

their use in a development context. We have also discussed how IV&V can act as a process

improvement agent, and hence can be a fruitful way of introducing formal methods into large

projects.

As with all potential uses of a new method, any extra e�ort needed to use the method must

be more than o�set by the bene�ts it brings. Use of a method in IV&V is no di�erent. We can

divide the bene�ts of using a formal method such as SCR into two areas:

1. The process of translating portions of a speci�cation into a tabular notation helps to detect

ambiguities and increase readability. The process can also be used to catch misunderstand-

ings, thus increasing the con�dence that the IV&V team are interpreting the speci�cation

correctly. The process of having several analysts produce their own tabular translations

was particularly useful in this respect. Di�erences in the tables they produced allowed us

to pinpoint exactly what the disagreement was about.

2. The resulting tables can be analysed for attributes such as coverage and disjointness. This

is a substantial contribution to the IV&V team's e�orts to check the technical integrity

of the speci�cations. Such attributes are particularly hard to analyse from the informal

speci�cations. As we develop more complete models, we plan to apply a fuller range of

consistency and completeness analysis.

The problems we encountered in applying SCR were as follows:

1. The process of translating into a formal notation is error-prone. Only by duplicating the

translation e�ort were we able to discover just how much scope there is for misinterpreta-

tion. Luckily, the resulting tables are very readable. Therefore it is much easier to compare

di�erent tables than it is to compare di�erent versions of the informal speci�cation.

2. For IV&V, �delity and traceability between the informal and formal speci�cations is di�-

cult to guarantee. The value of any analysis carried out by IV&V on the formal model is

entirely dependent on how faithful the formal model is to the developer's informal speci-

�cation. The IV&V's formal model can not be used in place of the informal speci�cations

produced by the developers.

11



3. The �delity problem is complicated by the fact that the formal models use a signi�cantly

di�erent abstraction to that used in the informal speci�cation. The process of incremen-

tally building a formal model by producing tabular representations of small pieces of the

original speci�cation broke down once we began to put the tables together.

The problems of �delity and traceability between speci�cations written in di�erent notations

is important enough to warrant more attention. We plan to study the problem in more detail

by developing a set of tools based on the ViewPoint framework [4], which will allow us to model

relationships between partial speci�cations written by di�erent people. We are also exploring

how this problem relates to that of linking test cases to requirements [3]. Finally, we are

continuing the experiments described in this paper by examining how model checking can be

used to validate the speci�cations.

Acknowledgments

Our thanks are due to Chuck Neppach and Dan McCaugherty for many interesting discussions
of the work presented here, and to Frank Schneider, Edward Addy, John Hinkle, George Sabolish,
Todd Montgomery and Butch Neal for detailed comments on earlier drafts of this paper.

References

[1] V. Basili. The experience factory and its relationship to other improvement paradigms. In

Proceedings of the 4th European Software Engineering Conference, Garmish-Partenkirchen,
Germany, September 1993.

[2] J. Callahan. Bipartite process models in software development organizations. Technical

Report NASA-IVV-96-005, NASA/WVU Software IV&V Facility, March 1996.

[3] J. Callahan and T. Montgomery. An approach to veri�cation and validation of a

reliable multicast protocol. In Proceedings of the ACM International Symposium on
Software Testing and Analysis (ISSTA), January 1996. This paper is available at

http://research.ivv.nasa.gov/~callahan/Papers/issta96/issta.html.

[4] S. M. Easterbrook and B. A. Nuseibeh. Using viewpoints for inconsistency management.

BCS/IEE Software Engineering Journal, 11(1), January 1996.

[5] D. H. Craigen S. L. Gerhart and T. J. Ralston. An international survey of industrial appli-

cations of formal methods, vol 1: Purpose, approach, analysis and conclusions. Technical

Report NRL/FR/5546{93-9581, Naval Research Laboratory, 1993.

[6] M. Heimdahl and N. Leveson. Completeness and consistency analysis of state-based re-

quirements. In Proceedings of the 17th International Conference on Software Engineering,
pages 3{14, April 1995.

[7] C. Heitemeyer B. Labaw and D. Kiskis. Consistency checking of scr-style requirements

speci�cations. In Second IEEE International Symposium on Requirements Engineering,
pages 56{63, March 1995.

[8] J. Sztipanovits G. Karsai C. Biegl T. Bapty A. Ledeczi and A. Misra. Multigraph: An

architecture for model-integrated computing. In ICECCS`95, November 1995.

[9] R. O. Lewis. Independent Veri�cation and Validation: A Lifecycle Engineering Process for
Quality Software. J. Wiley & Sons, 1992.

[10] S. Owre J. Rushby and N. Shankar. Analysing tabular and state-transition speci�cations in

pvs. Technical Report CSL-95-12, Computer Science Laboratory, SRI International, 1995.

12


